
Superphy Documentation
Release 4.2.2

kevinkle

Jul 12, 2018

Contents:

1 Introduction 1
1.1 Use: . 1
1.2 Submodule Build Statuses: . 1
1.3 Stats: . 2
1.4 CLI: Generate Graph Files: . 2
1.5 CLI: Generate Ontology: . 2
1.6 CLI: Enqueue Subtyping Tasks w/o Reactapp: . 3
1.7 Architecture: . 3
1.8 Further Details: . 4
1.9 Blazegraph: . 4
1.10 Contributing: . 4

2 Developer Guide 5
2.1 Getting Started . 6
2.2 Adding a New Module . 11
2.3 Directly Adding a New Module . 12
2.4 Adding an Endpoint in Flask . 14
2.5 Optional: Adding a new Queue . 16
2.6 Modifying the Front-End . 17
2.7 Packaging It All Together . 26
2.8 Adding a New Option to the Subtyping Module . 26
2.9 Debugging . 34
2.10 Editing the Docs . 36

3 Deplyoment Guide 37
3.1 Deploying in General . 37
3.2 Deploying to Corefacility . 41

4 Indices and tables 47

i

ii

CHAPTER 1

Introduction

Spfy: Platform for predicting subtypes from E.coli whole genome sequences, and builds graph data for population-
wide comparative analyses.

Live: https://lfz.corefacility.ca/superphy/spfy/

screenshots/screen-results_list.png

1.1 Use:

1. Install Docker (& Docker-Compose separately if you’re on Linux, link). mac/windows users have Compose
bundled with Docker Engine.

2. git clone --recursive https://github.com/superphy/spfy.git

3. cd spfy/

4. docker-compose up

5. Visit http://localhost:8090

6. Eat cake :cake:

1.2 Submodule Build Statuses:

ECTyper: PanPredic: Docker Image for Conda:

1

https://travis-ci.org/superphy/spfy
https://lfz.corefacility.ca/superphy/spfy/
https://docs.docker.com/compose/install/
http://localhost:8090
https://travis-ci.org/phac-nml/ecoli_serotyping
https://travis-ci.org/superphy/PanPredic
https://travis-ci.org/superphy/docker-flask-conda

Superphy Documentation, Release 4.2.2

1.3 Stats:

Comparing different population groups:

screenshots/fishers_overall.png

Runtimes of subtyping modules:

screenshots/spfy_indivs.png

1.4 CLI: Generate Graph Files:

• If you wish to only create rdf graphs (serialized as turtle files):

1. First install miniconda and activate the environment from https://raw.githubusercontent.com/superphy/
docker-flask-conda/master/app/environment.yml

2. cd into the app folder (where RQ workers typically run from): cd app/

3. Run savvy.py like so: python -m modules/savvy -i tests/ecoli/GCA_001894495.
1_ASM189449v1_genomic.fna where the argument after the -i is your genome (FASTA) file.

1.5 CLI: Generate Ontology:

screenshots/ontology.png

The ontology for Spfy is available at: https://raw.githubusercontent.com/superphy/backend/master/app/scripts/spfy_
ontology.ttl It was generated using https://raw.githubusercontent.com/superphy/backend/master/app/scripts/generate_
ontology.py with shared functions from Spfy’s backend code. If you wish to run it, do: 1. cd app/ 2. python -m
scripts/generate_ontology which will put the ontology in app/

You can generate a pretty diagram from the .ttl file using http://www.visualdataweb.de/webvowl/

2 Chapter 1. Introduction

https://raw.githubusercontent.com/superphy/docker-flask-conda/master/app/environment.yml
https://raw.githubusercontent.com/superphy/docker-flask-conda/master/app/environment.yml
https://raw.githubusercontent.com/superphy/backend/master/app/scripts/spfy_ontology.ttl
https://raw.githubusercontent.com/superphy/backend/master/app/scripts/spfy_ontology.ttl
https://raw.githubusercontent.com/superphy/backend/master/app/scripts/generate_ontology.py
https://raw.githubusercontent.com/superphy/backend/master/app/scripts/generate_ontology.py
http://www.visualdataweb.de/webvowl/

Superphy Documentation, Release 4.2.2

1.6 CLI: Enqueue Subtyping Tasks w/o Reactapp:

Note: currently setup for just .fna files

You can bypass the front-end website and still enqueue subtyping jobs by:

1. First, mount the host directory with all your genome files to /datastore in the containers.

For example, if you keep your files at /home/bob/ecoli-genomes/, you’d edit the
docker-compose.yml file and replace:

volumes:
- /datastore

with:

volumes:
- /home/bob/ecoli-genomes:/datastore

2. Then take down your docker composition (if it’s up) and restart it

docker-compose down
docker-compose up -d

3. Drop and shell into your webserver container (though the worker containers would work too) and run the script.

docker exec -it backend_webserver_1 sh
python -m scripts/sideload
exit

Note that reisdues may be created in your genome folder.

1.7 Architecture:

Dock er Imag e Port s Name s Des crip tion
back end- rq 80/t cp, 443/ tcp back end_wor ker_1 the main redi s queu e work ers
back end- rq-b laze grap h 80/t cp, 443/ tcp back end_wor ker-

blaz egra ph-i ds_ 1
this hand les spfy ID gene rati on for
the blaz egra ph data base

back end 0.0. 0.0: 8000 ->80
/tcp , 443/ tcp

back end_web -ngi nx-
u wsgi _1

the flas k back end whic h hand les
enqu euei ng task s

supe rphy /bla zegr aph:
2.1. 4-in fere ncin g

0.0. 0.0: 8080 ->80
80/t cp

back end_bla zegr
aph_1

Blaz egra ph Data base

redi s:3. 2 6379 /tcp back end_red is_ 1 Redi s Data base
reac tapp 0.0. 0.0: 8090 ->50

00/t cp
back end_rea ctap p_1 fron t-en d to spfy

1.6. CLI: Enqueue Subtyping Tasks w/o Reactapp: 3

Superphy Documentation, Release 4.2.2

1.8 Further Details:

The superphy/backend-rq:2.0.0 image is scalable: you can create as many instances as you need/have
processing power for. The image is responsible for listening to the multiples queue (12 workers) which handles
most of the tasks, including RGI calls. It also listens to the singles queue (1 worker) which runs ECTyper. This
is done as RGI is the slowest part of the equation. Worker management in handled in supervisor.

The superphy/backend-rq-blazegraph:2.0.0 image is not scalable: it is responsible for querying the
Blazegraph database for duplicate entries and for assigning spfyIDs in sequential order. It’s functions are kept as
minimal as possible to improve performance (as ID generation is the one bottleneck in otherwise parallel pipelines);
comparisons are done by sha1 hashes of the submitted files and non-duplicates have their IDs reserved by linking the
generated spfyID to the file hash. Worker management in handled in supervisor.

The superphy/backend:2.0.0 which runs the Flask endpoints uses supervisor to manage inner processes:
nginx, uWsgi.

1.9 Blazegraph:

• We are currently running Blazegraph version 2.1.4. If you want to run Blazegraph separately, please use the same
version otherwise there may be problems in endpoint urls / returns (namely version 2.1.1). See #63 Alternatively,
modify the endpoint accordingly under database['blazegraph_url'] in /app/config.py

1.10 Contributing:

Steps required to add new modules are documented in the Developer Guide.

4 Chapter 1. Introduction

https://github.com/superphy/backend/issues/63
http://superphy.readthedocs.io/en/latest/contributing.html

CHAPTER 2

Developer Guide

Table of Contents

• Getting Started

– Terminology

– Reading

– Reference Docs

– Installing Miniconda

– Genome Files for testing

– Generating More Genomes for Testing

– Docker Caveats

– Redis

– The General Workflow

• Adding a New Module

• Directly Adding a New Module

– About the Existing Codebase

– Adding Dependencies via Conda

– Integrating your Codebase into Spfy

• Adding an Endpoint in Flask

– Creating a Blueprint

– Enqueing a Job to RQ

– Returning the Job ID to the Front-End

5

Superphy Documentation, Release 4.2.2

– Seeing Your Changes in Docker

• Optional: Adding a new Queue

• Modifying the Front-End

– Adding a New Task Card

– Adding a New Task Form

– Adding a Results Page

• Packaging It All Together

• Adding a New Option to the Subtyping Module

– Adding a Checkbox to the Subtyping.js

– Handling a New Option in ra_posts.py

– Create an enqueue() Call in spfy.py

– Adding a Git Submodule

– Pickling the Result of Intermediate Tasks

– Modifying your Return to Fit datastruct_savvy.py

– Modifying beautify.py

• Debugging

– Monitoring Flask

– Monitoring RQ

– Debugging Javascript

• Editing the Docs

– Setup

2.1 Getting Started

Don’t worry, genome files are just like Excel spreadsheets.

(from the excellent https://xkcd.com/)

We use Docker and Docker-Compose for managing the databases: Blazegraph and Redis, the webserver: Ng-
inx/Flask/Conda, and Redis-Queue (RQ) workers: mostly in Conda. The official Install Docker Compose guide lists

6 Chapter 2. Developer Guide

https://xkcd.com/
https://docs.docker.com/compose/install/

Superphy Documentation, Release 4.2.2

steps for installing both the base Docker Engine, and for installing Docker-Compose separately if you’re on Linux.
For Mac and Windows users, Docker-Compose comes bundled with Docker Engine.

You’ll probably also want to install Miniconda as we bundle most dependencies in Conda environments. Specific
instructions to Spfy are available at Installing Miniconda.

Note that there is a Debugging section for tracking down the source of problems you may encounter.

2.1.1 Terminology

Used Interchangeably Notes
jobs, tasks A job in RQ is typically called a task when discussing the front-end.
endpoint, api We prefer to use endpoint for a route in Flask which the front-end interacts with.
spfy, this repo The superphy/backend repo.

2.1.2 Reading

For the libraries you’re not familiar with, we recommend you skim the docs below before starting:

• An overview of HTTP requests: https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

• Flask Blueprints (for routes): http://exploreflask.com/en/latest/blueprints.html

• Redis Queue docs: http://python-rq.org/docs/

• Thinking In React: https://facebook.github.io/react/docs/thinking-in-react.html

• JSX In Depth: https://facebook.github.io/react/docs/jsx-in-depth.html

2.1.3 Reference Docs

Javascript:

• Yarn commands for npm users: https://yarnpkg.com/lang/en/docs/migrating-from-npm/

• React Material Design docs: https://react-md.mlaursen.com/components/text-fields

• React-Bootstrap-Table docs: https://allenfang.github.io/react-bootstrap-table/example.html#basic

2.1.4 Installing Miniconda

For Linux-64 based distros, grab the Pyhon 2.7 Miniconda install script and install it (be sure to select the option to
add Miniconda’s path for your .bashrc):

wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh
bash Miniconda2-latest-Linux-x86_64.sh

Then get, install, and activate our Conda environment.yml:

wget https://raw.githubusercontent.com/superphy/docker-flask-conda/master/app/
→˓environment.yml
conda env create -f environment.yml
source activate backend

2.1. Getting Started 7

https://conda.io/docs/install/quick.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
http://exploreflask.com/en/latest/blueprints.html
http://python-rq.org/docs/
https://facebook.github.io/react/docs/thinking-in-react.html
https://facebook.github.io/react/docs/jsx-in-depth.html
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://react-md.mlaursen.com/components/text-fields
https://allenfang.github.io/react-bootstrap-table/example.html#basic

Superphy Documentation, Release 4.2.2

2.1.5 Genome Files for testing

For testing purposes, we use E.coli genome files from GenBank. A list of ftp links is available at the old
github/semantic repo. There should be 5353 genome files in total a .zip of which is available within the NML.

2.1.6 Generating More Genomes for Testing

The main points to keep in mind is that Spfy runs quality control checks to ensure submissions are E.coli and that hash
checking is employed to avoid duplicate entries in the datbase. The way we generate fakes are using a seed folder of
actual genomes (to pass QC) and renmaing the contig headers (to pass hash checking).

Usage:

1. Activate the conda env described in Installing Miniconda.

2. cd in backend/scripts/ (not: `backend/app/scripts)

3. Run: python generate_fakegenomes.py -i ~/ecoli-genomes/ -n 50000 where -i gives
the seed folder and -n gives the number of genomes to generate. This will put all the fakes in ~/
ecoli-genomes/fakes/.

2.1.7 Docker Caveats

We’ve had problems in the past with Ubuntu Desktop versions 16.04.2 LTS and 17.04, and Ubuntu Server 16.04.2 LTS
not connecting to NPM when building Docker images and from within the building. Builds work fine with Ubuntu
Server 16.04.2 LTS on Cybera and for Ubuntu Server 12.04 and 14.04 LTS on Travis-CI. Within the building, RHEL-
based operating systems (CentOS / Scientific Linux) build our NPM-dependent images (namely, reactapp) just fine.
Tested the build at home on Ubuntu Server 16.04.2 LTS and it works fine - looks like this is isolated to within the
buildng @NML Lethbridge.

Warning: As of June 30, 2017 Ubuntu Server 16.04.2 LTS is building NPM-dependent images okay @NML
Lethbridge.

Note: In general, we recommend you run Docker on Ubuntu 16.04.2 LTS (Server or Desktop) if you’re outside the
NML’s Lethrbidge location. Otherwise, CentOS is a secondary option.

For RHEL-based OSs, I don’t recommend using devicemapper, but instead use overlayfs. Reasons are documented
at https://github.com/moby/moby/issues/3182. There is a guide on setting up Docker with overlayfs at https://dcos.
io/docs/1.7/administration/installing/custom/system-requirements/install-docker-centos/, though I haven’t personally
tested it. UPDATE: (June 22‘17) There is a guide written by a Red Hat dev. http://www.projectatomic.io/blog/2015/
06/notes-on-fedora-centos-and-docker-storage-drivers/

If you do end up using devicemapper and run into disk space issues, such as:

172.18.0.1 - - [05/Jun/2017:17:50:01 +0000] "GET / HTTP/1.1" 200 12685 "-" "Mozilla/5.
→˓0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110
→˓Safari/537.36" "-"
2017/06/05 17:50:13 [warn] 11#11: *2 a client request body is buffered to a temporary
→˓file /var/cache/nginx/client_temp/0000000001, client: 172.18.0.1, server: ,
→˓request: "POST /upload HTTP/1.1", host: "localhost:8000", referrer: "http://
→˓localhost:8000/"
[2017-06-05 17:58:31,417] ERROR in app: Exception on /upload [POST]

(continues on next page)

8 Chapter 2. Developer Guide

https://raw.githubusercontent.com/superphy/semantic/master/superphy/src/upload/python/data/download_files.txt
https://raw.githubusercontent.com/superphy/semantic/master/superphy/src/upload/python/data/download_files.txt
https://github.com/superphy/reactapp
https://github.com/moby/moby/issues/3182
https://dcos.io/docs/1.7/administration/installing/custom/system-requirements/install-docker-centos/
https://dcos.io/docs/1.7/administration/installing/custom/system-requirements/install-docker-centos/
http://www.projectatomic.io/blog/2015/06/notes-on-fedora-centos-and-docker-storage-drivers/
http://www.projectatomic.io/blog/2015/06/notes-on-fedora-centos-and-docker-storage-drivers/

Superphy Documentation, Release 4.2.2

(continued from previous page)

Traceback (most recent call last):
File "/opt/conda/envs/backend/lib/python2.7/site-packages/flask/app.py", line 1982,

→˓in wsgi_app
response = self.full_dispatch_request()

File "/opt/conda/envs/backend/lib/python2.7/site-packages/flask/app.py", line 1614,
→˓in full_dispatch_request

rv = self.handle_user_exception(e)
File "/opt/conda/envs/backend/lib/python2.7/site-packages/flask_cors/extension.py",

→˓line 161, in wrapped_function
return cors_after_request(app.make_response(f(*args, **kwargs)))

File "/opt/conda/envs/backend/lib/python2.7/site-packages/flask/app.py", line 1517,
→˓in handle_user_exception

reraise(exc_type, exc_value, tb)
File "/opt/conda/envs/backend/lib/python2.7/site-packages/flask/app.py", line 1612,

→˓in full_dispatch_request
rv = self.dispatch_request()

File "/opt/conda/envs/backend/lib/python2.7/site-packages/flask/app.py", line 1598,
→˓in dispatch_request

return self.view_functions[rule.endpoint](**req.view_args)
File "./routes/views.py", line 86, in upload
form = request.form

File "/opt/conda/envs/backend/lib/python2.7/site-packages/werkzeug/local.py", line
→˓343, in __getattr__

return getattr(self._get_current_object(), name)
File "/opt/conda/envs/backend/lib/python2.7/site-packages/werkzeug/utils.py", line

→˓73, in __get__
value = self.func(obj)

File "/opt/conda/envs/backend/lib/python2.7/site-packages/werkzeug/wrappers.py",
→˓line 492, in form

self._load_form_data()
File "/opt/conda/envs/backend/lib/python2.7/site-packages/flask/wrappers.py", line

→˓185, in _load_form_data
RequestBase._load_form_data(self)

File "/opt/conda/envs/backend/lib/python2.7/site-packages/werkzeug/wrappers.py",
→˓line 361, in _load_form_data

mimetype, content_length, options)
File "/opt/conda/envs/backend/lib/python2.7/site-packages/werkzeug/formparser.py",

→˓line 195, in parse
content_length, options)

File "/opt/conda/envs/backend/lib/python2.7/site-packages/werkzeug/formparser.py",
→˓line 100, in wrapper

return f(self, stream, *args, **kwargs)
File "/opt/conda/envs/backend/lib/python2.7/site-packages/werkzeug/formparser.py",

→˓line 212, in _parse_multipart
form, files = parser.parse(stream, boundary, content_length)

File "/opt/conda/envs/backend/lib/python2.7/site-packages/werkzeug/formparser.py",
→˓line 523, in parse

return self.cls(form), self.cls(files)
File "/opt/conda/envs/backend/lib/python2.7/site-packages/werkzeug/datastructures.py

→˓", line 384, in __init__
for key, value in mapping or ():

File "/opt/conda/envs/backend/lib/python2.7/site-packages/werkzeug/formparser.py",
→˓line 521, in <genexpr>

form = (p[1] for p in formstream if p[0] == 'form')
File "/opt/conda/envs/backend/lib/python2.7/site-packages/werkzeug/formparser.py",

→˓line 497, in parse_parts
_write(ell)

(continues on next page)

2.1. Getting Started 9

Superphy Documentation, Release 4.2.2

(continued from previous page)

IOError: [Errno 28] No space left on device
[pid: 44|app: 0|req: 2/2] 172.18.0.1 () {46 vars in 867 bytes} [Mon Jun 5 17:53:08
→˓2017] POST /upload => generated 291 bytes in 323526 msecs (HTTP/1.1 500) 2 headers
→˓in 84 bytes (54065 switches on core 0)
172.18.0.1 - - [05/Jun/2017:17:58:32 +0000] "POST /upload HTTP/1.1" 500 291 "http://
→˓localhost:8000/" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like
→˓Gecko) Chrome/58.0.3029.110 Safari/537.36" "-"

Which was displayed by running:

docker-compose logs backend_webserver_1

You will have to increase the volume disk sizes: https://forums.docker.com/t/increase-container-volume-disk-size/
1652/8

With Centos 7 I did the following to increase the default size of the containers
Modify the docker config in /etc/sysconfig/docker-storage to add the line:
DOCKER_STORAGE_OPTIONS= - -storage-opt dm.basesize=20G
service docker stop
rm /var/lib/docker NOTE THIS DELETES ALL IMAGES etc. SO MAKE A BACKUP
service docker start
docker load < [each_save_in_backup.tar]
docker run -i -t [imagename] /bin/bash
In the bash prompt of the docker container "df -k" should show 20GB / file system
→˓size now.

2.1.8 Redis

Warning: By default, our docker composition is setup to run Redis db with persistant storage so jobs are kept
even in you stop and restart the redis service. This is useful in production and regular usage scenarios as all your
jobs are not lost if the composition is stopped or the server/computer is rebooted. However, this also means that if
you write a job which errors out and also upload a bunch of files, they will continue to be started even if you stop
the composition to write fixes.

To run Redis in non-persistant mode, in docker-compose.yml replace:

redis:
image: redis:3.2
command: redis-server --appendonly yes # for persistance
volumes:
- /data

with:

redis:
image: redis:3.2

2.1.9 The General Workflow

10 Chapter 2. Developer Guide

https://forums.docker.com/t/increase-container-volume-disk-size/1652/8
https://forums.docker.com/t/increase-container-volume-disk-size/1652/8

Superphy Documentation, Release 4.2.2

Note: To use docker-compose commands, you must be in the same directory as the docker-compose.yml
file you’re trying to work with. This is because Docker-Compose uses that .yml file to determine the names of services
you’re running commands against; for example you might run docker-compose logs webserver. You can
still access the underlying docker containers outside of the folder by interfacing with the docker engine directly:
docker logs backend_webserver_1.

For working on the backend:

1. Make your changes/additions

2. Rebuild the images

docker-compose build --no-cache

or selectively:

docker-compose build --no-cache webserver worker

3. Bring up the composition and use Chrome’s devtools for testing

docker-compose up

4. Check logs as appropriate:

docker-compose logs webserver
docker-compose logs worker

5. Cleanup the composition you just started

docker-compose down

6. Make more changes and rebuild

docker-compose build --no-cache

For working on the front-end:

We reccomend using yarn start as it has hot-reloading enabled so it’ll automatically rebuild and display your
changes at localhost:3000.

1. First, start up the backend (if you’re now making changes to the backend, we’ll use the default build step when
bringing up the composition)

docker-compose up

2. In a separate terminal, fork and clone the reactapp repo, and then bring it up (you’ll have to install node and
yarn:

yarn install
yarn start

3. Make changes to your fork of reactapp and you’ll see them refreshed live at localhost:3000.

2.2 Adding a New Module

There are a few ways of adding a new module:

2.2. Adding a New Module 11

Superphy Documentation, Release 4.2.2

1. Integrate your code into the Spfy codebase and update the RQ workers accordingly.

2. Add a enqueuing method to Spfy’s code, but then create a new queue and a new docker image, with additional
dependencies, which is added to Spfy’s docker-compose.yml file.

3. Setting up your module as a microservice running in its own Docker container, add a worker to handle requests
to RQ.

Note: The quickest approach is to integrate your code into the Spfy codebase and update the RQ workers accordingly.

If you wish to integrate your code with Spfy, you’ll have to update any dependencies to the underlying Conda-based
image the RQ workers depend on. You’ll also have to include your code in the /app directory of this repo, as that
is the only directory the current RQ workers contain. The intended structure is to create a directory in /app/modules
for your codebase and a .py file above at /app/modules/newmodule.py, for example, which contains the method your
Queue.enqueue() function uses.

There is more specific documentation for this process in Directly Adding a New Module.

If you wish to create your own image, you can use the RQ worker image as a starting point. Specifically you’ll want to
add your repo as a git submodule in superphy/backend and modify the COPY ./app /app to target your repo, similar to
the way reactapp is included. You’ll also want to take a look at the supervisord-rq.conf which controls the RQ workers.

In both cases, the spfy webserver will have to be modified in order for the front-end to have an endpoint target; this
is documented in Adding an Endpoint in Flask. The front-end will also have to be modified for there to be a form to
submit tasks and have a results view generated for your new module; this is documented in Modifying the Front-End.

2.3 Directly Adding a New Module

Warning: Everything (rq workers, uwsgi, etc.) run inside /app, and all python imports should be relative to this.
Such as

from middleware.blazegraph.reserve_id import reserve_id

The top-most directory is used to build Docker Images and copies the contents of /app to run inside the containers.
This is done as the apps (Flask, Reactapp) themselves don’t need copies of the Dockerfiles, other apps, etc.

2.3.1 About the Existing Codebase

If you want to store the results to Blazegraph, you can add that to your pipeline. For subtyping tasks (ECTyper, RGI),
the graph generation is handled in /app/modules/turtleGrapher/datastruct_savvy.py, you can use
that as an example. Note that the upload_graph() call is made within datastruct_savvy.py; this is done
to avoid having to pass the resulting rdflib.Graph object between tasks. Also, the base graph (only containing
information about the file, without any results from analyses) is handled by /app/modules/turtleGrapher/
turtle_grapher.py.

2.3.2 Adding Dependencies via Conda

The main environment.yml file is located in our superphy/docker-flask-conda repo. This is used by the worker and
worker-blazegraph-ids containers (and the webserver container, though that may/should change). We also pull this
base superphy/docker-flask-conda image from Docker Hub. So you would have to:

12 Chapter 2. Developer Guide

https://github.com/superphy/backend/blob/master/Dockerfile-rq
https://github.com/superphy/reactapp
https://github.com/superphy/backend/blob/master/app/supervisord-rq.conf
https://raw.githubusercontent.com/superphy/docker-flask-conda/master/app/environment.yml
https://github.com/superphy/docker-flask-conda
https://github.com/superphy/backend/blob/master/Dockerfile-rq
https://github.com/superphy/backend/blob/master/Dockerfile-rq-blazegraph
https://github.com/superphy/backend/blob/master/Dockerfile-spfy

Superphy Documentation, Release 4.2.2

1. push the new image

2. specify the new version on each Dockerfile, namely via the

FROM superphy/docker-flask-conda:2.0.0

tag.

To get started, install Miniconda and clone the docker-flask-conda repo:

git clone https://github.com/superphy/docker-flask-conda.git && cd docker-flask-conda

Recreate the env:

conda env create -f app/environment.yml

Activate the env:

source activate backend

Then you can install any dependencies as usual. Via pip:

pip install whateverpackage

or conda

conda install whateverpackage

You can then export the env:

conda env export > app/environment.yml

If you push your changes to github on master, Travis-CI is setup to build the Docker Image and push it to Docker Hub
automatically under the tag latest.

Otherwise, build and push the image under your own tag, for example 0.0.1:

docker build -t superphy/docker-flask-conda:0.0.1 .
docker push superphy/docker-flask-conda:0.0.1

Then specific your image in the corresponding Dockerfiles: worker. If you’re adding dependencies to flask, also
update the webserver Dockerfile.

FROM superphy/docker-flask-conda:0.0.1

2.3.3 Integrating your Codebase into Spfy

There are two ways of approaching this:

1. If you’re not using any of Spfy’s codebase, add your code as a git submodule in /app/modules/

2. If you are using Spfy’s codebase, fork and create a directory in /app/modules/ with your code.

In both cases, you should add a method in /app/module/pickaname.py which enqueues a call to your package. More
information on this is documented at Enqueing a Job to RQ.

To add a git submodule, clone the repo and create a branch:

2.3. Directly Adding a New Module 13

https://conda.io/docs/install/quick.html
https://github.com/superphy/backend/blob/master/Dockerfile-rq
https://github.com/superphy/backend/blob/master/Dockerfile-spfy

Superphy Documentation, Release 4.2.2

git clone --recursive https://github.com/superphy/backend.git && cd backend/
git checkout -b somenewmodule

You can then add your repo and commit it to superphy/backend as usual:

git submodule add https://github.com/chaconinc/DbConnector app/modules/DbConnector
git add .
git commit -m 'ADD: my new module'

or a specific branch:

git submodule add -b somebranch https://github.com/chaconinc/DbConnector app/modules/
→˓DbConnector

Note that the main repo superphy/backend will pin your git submodule to a specific commit. You can update it to the
HEAD of w/e branch was used by running a git pull from within the submodule’s directory and then adding it in the
main repo. If you push this change to GitHub, to update other clones of superphy/backend run:

git submodule update

2.4 Adding an Endpoint in Flask

To create a new endpoint in Flask, you’ll have to:

1. Create a Blueprint with your route(s) and register it to the app.

2. Enqueue a job in RQ

3. Return the job id via Flask to the front-end

We recommend you perform the setup in Monitoring RQ before you begin.

2.4.1 Creating a Blueprint

We use Flask Blueprints to compartmentalize all routes. They are contained in /app/routes and have the following
basic structure:

from flask import Blueprint, request, jsonify

bp_someroutes = Blueprint('someroutes', __name__)

if methods is not defined, default only allows GET
@bp_someroutes.route('/api/v0/someroute', methods=['POST'])
def someroute():
form = request.form
return jsonify('Got your form')

Note that a blueprint can have multiple routes defined in it such as in ra_views.py which is used to build the group
options for Fisher’s comparison. To add a new route, create a python file such as /app/routes/someroutes.py with the
above structure. Then in the app factory.py import your blueprint via:

from routes.someroute import bp_someroute

and register your blueprint in create_app() by adding:

14 Chapter 2. Developer Guide

http://flask.pocoo.org/docs/0.12/blueprints/
https://github.com/superphy/backend/blob/master/app/routes/ra_views.py
https://github.com/superphy/backend/blob/master/app/factory.py

Superphy Documentation, Release 4.2.2

app.register_blueprint(bp_someroute)

Note that we allow CORS on all routes of form /api/* such as /api/v0/someroute. This is required as the front-end
reactapp is deployed in a separate container (and has a separate IP Address) from the Flask app.

2.4.2 Enqueing a Job to RQ

You will then have to enqueue a job, based off that request form. There is an example of how form parsing is handled
for Subtyping in the upload() method of ra_posts.py.

If you’re integrating your codebase with Spfy, add your code to a new directory in /app/modules and a method which
handles enqueing in /app/modules/somemodule.py for example. The gc.py file resembles a basic template for a method
to enqueue.

import logging
import config
import redis
from rq import Queue
from modules.comparisons.groupcomparisons import groupcomparisons
from modules.loggingFunctions import initialize_logging

logging
log_file = initialize_logging()
log = logging.getLogger(__name__)

redis_url = config.REDIS_URL
redis_conn = redis.from_url(redis_url)
multiples_q = Queue('multiples', connection=redis_conn, default_timeout=600)

def blob_gc_enqueue(query, target):
job_gc = multiples_q.enqueue(groupcomparisons, query, target, result_ttl=-1)
log.info('JOB ID IS: ' + job_gc.get_id())
return job_gc.get_id()

Of note is that when calling RQ’s enqueue() method, a custom Job class is returned. It is important that our enqueuing
method returns the job id to flask, which is typically some hash such as:

16515ba5-040d-4315-9c88-a3bf5bfbe84e

2.4.3 Returning the Job ID to the Front-End

Generally, we expect the return from Flask (to the front-end) to be a dictionary with the job id as the key to another
dictionary with keys analysis and file (if relevant), though this is not strictly required (a single line containing the key
will also work, as you handle naming of analysis again when doing a dispatch() in reactapp - more on this later). For
example, a return might be:

"c96619b8-b089-4a3a-8dd2-b09b5d5e38e9": {
"analysis": "Virulence Factors and Serotype",
"file": "/datastore/2017-06-14-21-26-43-375215-GCA_001683595.1_NGF2_genomic.fna"

}

It is expected that only 1 job id be returned per request. In v4.2.2 we introduced the concept of blob ids in which
dependency checking is handled server-side; you can find more details about this in reactapp issue #30 and backend
issue #90. The Redis DB was also set to run in persistent-mode, with results stored to disk inside a docker volume. The

2.4. Adding an Endpoint in Flask 15

https://github.com/superphy/reactapp
https://github.com/superphy/backend/blob/master/app/routes/ra_posts.py
https://github.com/superphy/backend/blob/master/app/modules/gc.py
https://github.com/superphy/reactapp
https://github.com/superphy/backend/releases/tag/v4.2.2
https://github.com/superphy/reactapp/issues/30
https://github.com/superphy/backend/issues/90
https://github.com/superphy/backend/issues/90

Superphy Documentation, Release 4.2.2

blob concept is only relevant if you handle parallelism & pipelines for a given task (ex. Subtyping) through multiple
RQ jobs (ex. QC, ID Reservation, ECTyper, RGI, parsing, etc.); if you handle parallelism in your own codebase, then
this isn’t required.

Another point to note is that the:

result_ttl=-1

parameter in the enqueue() method is required to store the result in Redis permanently; this is done so results will
forever be available to the front-end. If we ever scale Spfy to widespread usage, it may be worth setting a ttl of 48
hours or so via:

result_ttl=172800

where the ttl is measured in seconds. A warning message would also have to be added to reactapp.

2.4.4 Seeing Your Changes in Docker

To rebuild the Flask image, in /backend:

docker-compose stop webserver worker
docker-compose build --no-cache webserver worker
docker-compose up

2.5 Optional: Adding a new Queue

Normally, we distribute tasks between two main queues: singles and multiples. The singles queue is intended for tasks
that can’t be run in parallel within the same container (though you can probably run multiple containers, if you so
wish); our use-case is for ECTyper. Everything else is intended to be run on the multiples queue.

If you wish to add your own Queue, you’ll have to create some worker to listen to it. Ideally, do this by creating a new
Docker container for your worker by copying the worker Dockerfile as your starting point then copying and modifying
the supervisord-rq.conf to listen to your new queue. Specifically, the:

command=/opt/conda/envs/backend/bin/rq worker -c config multiples

would have to be modified to target the name of the new Queue your container listens to; by replacing multiples with
newqueue, for example.

Eventually, we may wish to add priority queues once the number of tasks become large and we have long-running
tasks alongside ones that should immediately return to the user. This can be defined by the order in which queues are
named in the supervisord command:

command=/opt/conda/envs/backend/bin/rq worker -c config multiples

For example, queues dog and cat can be ordered:

command=/opt/conda/envs/backend/bin/rq worker -c config dog cat

which instructs the RQ workers to run tasks in dog first, before running tasks in cat.

16 Chapter 2. Developer Guide

https://github.com/superphy/reactapp
https://github.com/superphy/backend/blob/master/Dockerfile-rq
https://github.com/superphy/backend/blob/master/app/supervisord-rq.conf

Superphy Documentation, Release 4.2.2

2.6 Modifying the Front-End

I’d recommend you leave Spfy’s setup running in Docker-Compose and run the reactapp live so you can see immediate
updates.

To get started, install node and then install yarn. For debugging, I also recommend using Google Chrome and installing
the React Dev Tools and Redux Dev Tools.

Optionally, I like to run Spfy’s composition on one of the Desktops while coding away on my laptop. You
can do the same by modifying ROOT api address in api.js to point to a different IP address or name:

const ROOT = 'http://10.139.14.212:8000/'

Then, with Spfy’s composition running, you’ll want to clone reactapp and run:

cd reactapp/
yarn install
yarn start

Our reactapp uses Redux to store jobs, but also uses regular React states when building forms or displaying results.
This was done so you don’t have to be too familiar with Redux when building new modules. The codebase is largely
JSX+ES6.

2.6.1 Adding a New Task Card

The first thing you’ll want to do is add a description of your module to api.js. For example, the old analyses const is:

export const analyses = [{
'analysis':'subtyping',
'description':'Serotype, Virulence Factors, Antimicrobial Resistance',
'text':(
<p>
Upload genome files & determine associated subtypes.

</br>
Subtyping is powered by

→˓ECTyper.
AMR is powered by CARD.

</p>
)

},{
'analysis':'fishers',
'description':"Group comparisons using Fisher's Exact Test",
'text':'Select groups from uploaded genomes & compare for a chosen target datum.'

}]

If we added a new module called ml, analyses might be:

export const analyses = [{
'analysis':'subtyping',
'description':'Serotype, Virulence Factors, Antimicrobial Resistance',
'text':(
<p>
Upload genome files & determine associated subtypes.

</br>
Subtyping is powered by

→˓ECTyper.
(continues on next page)

2.6. Modifying the Front-End 17

https://nodejs.org/en/
https://yarnpkg.com/en/docs/install#mac-tab
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en
https://github.com/superphy/reactapp/blob/master/src/middleware/api.js
https://github.com/superphy/reactapp
https://github.com/superphy/reactapp
https://github.com/superphy/reactapp/blob/master/src/middleware/api.js

Superphy Documentation, Release 4.2.2

(continued from previous page)

AMR is powered by CARD.
</p>

)
},{

'analysis':'fishers',
'description':"Group comparisons using Fisher's Exact Test",
'text':'Select groups from uploaded genomes & compare for a chosen target datum.'

},{
'analysis':'ml',
'description': "Machine learning module for Spfy",
'text': 'Multiple machine learning algorithms such as, support vector machines,

→˓naive Bayes, and the Perceptron algorithm.'
}]

This will create a new card for in tasks at the root page.

2.6.2 Adding a New Task Form

Note: On terminology: we consider containers to be Redux-aware; that is, they require the connect() function from
react-redux. Components are generally not directly connected to Redux and instead get information from the Redux
store passed down to it via the component’s props. Note that this is not strictly true as we make use of react-refetch,
which is a fork of Redux and uses a separate connect() function, to poll for job statuses and results. However, the
interaction between react-refetch and redux is largely abstracted away from you and instead maps a components props
directly to updates via react-refetch - you don’t have to dispatch actions or pull down updates separately.

Then create a container in /src/containers which will be your request form. You can look at Subtyping.js for an
example.

import React, { PureComponent } from 'react';
// react-md
import FileInput from 'react-md/lib/FileInputs';
import Checkbox from 'react-md/lib/SelectionControls/Checkbox'
import TextField from 'react-md/lib/TextFields';
import Button from 'react-md/lib/Buttons';
import Switch from 'react-md/lib/SelectionControls/Switch';
import Subheader from 'react-md/lib/Subheaders';
import CircularProgress from 'react-md/lib/Progress/CircularProgress';
// redux
import { connect } from 'react-redux'
import { addJob } from '../actions'
import { subtypingDescription } from '../middleware/subtyping'
// axios
import axios from 'axios'
import { API_ROOT } from '../middleware/api'
// router
import { Redirect } from 'react-router'
import Loading from '../components/Loading'

class Subtyping extends PureComponent {
constructor(props) {
super(props);
this.state = {

file: null,
(continues on next page)

18 Chapter 2. Developer Guide

https://github.com/superphy/reactapp/blob/master/src/containers/Subtyping.js

Superphy Documentation, Release 4.2.2

(continued from previous page)

pi: 90,
amr: false,
serotype: true,
vf: true,
submitted: false,
open: false,
msg: '',
jobId: "",
hasResult: false,
groupresults: true,
progress: 0

}
}
_selectFile = (file) => {
console.log(file)
if (!file) { return; }
this.setState({ file });

}
_updatePi = (value) => {
this.setState({ pi: value });

}
_updateSerotype = (value) => {
this.setState({ serotype: value })

}
_updateAmr = (value) => {
this.setState({ amr: value })

}
_updateVf = (value) => {
this.setState({ vf: value })

}
_updateGroupResults = (groupresults) => {
this.setState({ groupresults })

}
_updateUploadProgress = (progress) => {
this.setState({progress})

}
_handleSubmit = (e) => {
e.preventDefault() // disable default HTML form behavior
// open and msg are for Snackbar
// uploading is to notify users
this.setState({
uploading: true

});
// configure a progress for axios
const createConfig = (_updateUploadProgress) => {

var config = {
onUploadProgress: function(progressEvent) {
var percentCompleted = Math.round((progressEvent.loaded * 100) /

→˓progressEvent.total);
_updateUploadProgress(percentCompleted)

}
}
return config

}
// create form data with files
var data = new FormData()
// eslint-disable-next-line

(continues on next page)

2.6. Modifying the Front-End 19

Superphy Documentation, Release 4.2.2

(continued from previous page)

this.state.file.map((f) => {
data.append('file', f)

})
// append options
// to match spfy(angular)'s format, we dont use a dict
data.append('options.pi', this.state.pi)
data.append('options.amr', this.state.amr)
data.append('options.serotype', this.state.serotype)
data.append('options.vf', this.state.vf)
// new option added in 4.2.0, group all files into a single result
// this means polling in handled server-side
data.append('options.groupresults', this.state.groupresults)
// put
axios.post(API_ROOT + 'upload', data, createConfig(this._updateUploadProgress))

.then(response => {
console.log(response)
// no longer uploading
this.setState({
uploading: false

})
let jobs = response.data
// handle the return
for(let job in jobs){
let f = (this.state.file.length > 1 ?
String(this.state.file.length + ' Files')
:this.state.file[0].name)
if(jobs[job].analysis === "Antimicrobial Resistance"){
this.props.dispatch(addJob(job,
"Antimicrobial Resistance",
new Date().toLocaleTimeString(),
subtypingDescription(f, this.state.pi, false, false, this.state.amr)

))
} else if (jobs[job].analysis === "Virulence Factors and Serotype") {

let descrip = ''
if (this.state.vf && this.state.serotype){descrip = "Virulence Factors

→˓and Serotype"}
else if (this.state.vf && !this.state.serotype) {descrip = "Virulence

→˓Factors"}
else if (!this.state.vf && this.state.serotype) {descrip = "Serotype"}
this.props.dispatch(addJob(job,
descrip,
new Date().toLocaleTimeString(),
subtypingDescription(f, this.state.pi, this.state.serotype, this.state.

→˓vf, false)
))

} else if (jobs[job].analysis === "Subtyping") {
// set the jobId state so we can use Loading
const jobId = job
this.setState({jobId})
// dispatch
this.props.dispatch(addJob(job,
"Subtyping",
new Date().toLocaleTimeString(),
subtypingDescription(
f , this.state.pi, this.state.serotype, this.state.vf, this.state.amr)

))
}

(continues on next page)

20 Chapter 2. Developer Guide

Superphy Documentation, Release 4.2.2

(continued from previous page)

}
const hasResult = true
this.setState({hasResult})

})
};
render(){
const { file, pi, amr, serotype, vf, groupresults, uploading, hasResult, progress

→˓} = this.state
return (

<div>
{/* uploading bar */}
{(uploading && !hasResult) ?
<div>
<CircularProgress key="progress" id="loading" value={progress} centered=

→˓{false} />
Uploading... {progress} %

</div>
: ""

}
{/* actual form */}
{(!hasResult && !uploading)?
<form className="md-text-container md-grid">

<div className="md-cell md-cell--12">
<FileInput
id="inputFile"
secondary
label="Select File(s)"
onChange={this._selectFile}
multiple

/>
<Switch
id="groupResults"
name="groupResults"
label="Group files into a single result"
checked={groupresults}
onChange={this._updateGroupResults}

/>
{!groupresults ?
<Subheader primaryText="(Will split files & subtyping methods into

→˓separate results)" inset />
: ''}
<Checkbox

id="serotype"
name="check serotype"
checked={serotype}
onChange={this._updateSerotype}
label="Serotype"

/>
<Checkbox

id="vf"
name="check vf"
checked={vf}
onChange={this._updateVf}
label="Virulence Factors"

/>
<Checkbox

id="amr"
(continues on next page)

2.6. Modifying the Front-End 21

Superphy Documentation, Release 4.2.2

(continued from previous page)

name="check amr"
checked={amr}
onChange={this._updateAmr}
label="Antimicrobial Resistance"

/>
{amr ?
<Subheader primaryText="(Note: AMR increases run-time by several

→˓minutes per file)" inset />
: ''}
<TextField

id="pi"
value={pi}
onChange={this._updatePi}
helpText="Percent Identity for BLAST"

/>
<Button

raised
secondary
type="submit"
label="Submit"
disabled={!file}
onClick={this._handleSubmit}

/>
</div>
<div className="md-cell md-cell--12">
{this.state.file ? this.state.file.map(f => (

<TextField
key={f.name}
defaultValue={f.name}

/>
)) : ''}

</div>
</form> :
// if results are grouped, display the Loading page
// else, results are separate and display the JobsList cards page
(!uploading?(!groupresults?

<Redirect to='/results' />:
<Loading jobId={this.state.jobId} />

):"")
}

</div>
)

}
}

Subtyping = connect()(Subtyping)

export default Subtyping

The important part to note is the form submission:

axios.post(API_ROOT + 'upload', data, createConfig(this._updateUploadProgress))
.then(response => {

console.log(response)
// no longer uploading
this.setState({
uploading: false

(continues on next page)

22 Chapter 2. Developer Guide

Superphy Documentation, Release 4.2.2

(continued from previous page)

})
let jobs = response.data
// handle the return
for(let job in jobs){
let f = (this.state.file.length > 1 ?
String(this.state.file.length + ' Files')
:this.state.file[0].name)
if(jobs[job].analysis === "Antimicrobial Resistance"){
this.props.dispatch(addJob(job,
"Antimicrobial Resistance",
new Date().toLocaleTimeString(),
subtypingDescription(f, this.state.pi, false, false, this.state.amr)

))

(truncated)

We can take a look at a simpler example in Fishers.js where there aren’t multiple jobs[job].analysis === “Antimicro-
bial Resistance” analysis types in a single form.

axios.post(API_ROOT + 'newgroupcomparison', {
groups: groups,
target: target

})
.then(response => {

console.log(response);
const jobId = response.data;
const hasResult = true;
this.setState({jobId})
this.setState({hasResult})
// add jobid to redux store
this.props.dispatch(addJob(jobId,
'fishers',
new Date().toLocaleTimeString(),
fishersDescription(groups, target)

))
});

First you’d want to change the POST route so it targets your new endpoint.

axios.post(API_ROOT + 'someroute', {

Note that API_ROOT prepends the api/v0/ so the full route might be api/v0/someroute.

Now we need to dispatch an addJob action to Redux. This stores the job information in our Redux store, under the
jobs list. In our example, we used a function to generate the description, but if you were to add a dispatch for your ml
module you might do something like:

axios.post(API_ROOT + 'someroute', {
groups: groups,
target: target

})
.then(response => {
console.log(response);
const jobId = response.data;
const hasResult = true;
this.setState({jobId})
this.setState({hasResult})

(continues on next page)

2.6. Modifying the Front-End 23

https://github.com/superphy/reactapp/blob/master/src/containers/Fishers.js

Superphy Documentation, Release 4.2.2

(continued from previous page)

// add jobid to redux store
this.props.dispatch(addJob(jobId,

'ml',
new Date().toLocaleTimeString(),
'my description of what ml options were chosen'

))
});

Then, after creating your form, in /src/containers/App.js add an import for your container:

import ML from '../containers/ML'

then add a route:

<Switch key={location.key}>
<Route exact path="/" location={location} component={Home} />
<Route path="/fishers" location={location} component={Fishers} />
<Route path="/subtyping" location={location} component={Subtyping} />
<Route exact path="/results" location={location} component={Results} />
<Route path="/results/:hash" location={location} component={VisibleResult} />

</Switch>

would become:

<Switch key={location.key}>
<Route exact path="/" location={location} component={Home} />
<Route path="/fishers" location={location} component={Fishers} />
<Route path="/subtyping" location={location} component={Subtyping} />
<Route path="/ml" location={location} component={ML} />
<Route exact path="/results" location={location} component={Results} />
<Route path="/results/:hash" location={location} component={VisibleResult} />

</Switch>

Now your form will render at /ml.

2.6.3 Adding a Results Page

When your form dispatches an addJob action to Redux, the /results page will automatically populate and poll for the
status of your job. You’ll now need to add a component to display the results to the user. For tabular results, we use
the react-bootstrap-table package. You can look at /src/components/ResultsFishers.js as a starting point.

import React, { Component } from 'react';
import { connect } from 'react-refetch'
// progress bar
import CircularProgress from 'react-md/lib/Progress/CircularProgress';
// requests
import { API_ROOT } from '../middleware/api'
// Table
import { BootstrapTable, TableHeaderColumn } from 'react-bootstrap-table';

class ResultFishers extends Component {
render() {
const { results } = this.props
const options = {

searchPosition: 'left'

(continues on next page)

24 Chapter 2. Developer Guide

https://github.com/superphy/reactapp/blob/master/src/containers/App.js
https://github.com/AllenFang/react-bootstrap-table
https://github.com/superphy/reactapp/blob/master/src/components/ResultFishers.js

Superphy Documentation, Release 4.2.2

(continued from previous page)

};
if (results.pending){

return <div>Waiting for server response...<CircularProgress key="progress" id=
→˓'contentLoadingProgress' /></div>

} else if (results.rejected){
return <div>Couldn't retrieve job: {this.props.jobId}</div>

} else if (results.fulfilled){
console.log(results)
return (

<BootstrapTable data={results.value.data} exportCSV search options={options}>
<TableHeaderColumn isKey dataField='0' dataSort filter={ { type:

→˓'TextFilter', placeholder: 'Please enter a value' } } width='400' csvHeader='Target
→˓'>Target</TableHeaderColumn>

<TableHeaderColumn dataField='1' dataSort filter={ { type: 'TextFilter',
→˓placeholder: 'Please enter a value' } } csvHeader='QueryA'>QueryA</
→˓TableHeaderColumn>

<TableHeaderColumn dataField='2' dataSort filter={ { type: 'TextFilter',
→˓placeholder: 'Please enter a value' } } csvHeader='QueryB'>QueryB</
→˓TableHeaderColumn>

<TableHeaderColumn dataField='3' dataSort filter={ { type: 'TextFilter',
→˓placeholder: 'Please enter a value' } } width='140' csvHeader='#Present QueryA'>
→˓#Present QueryA</TableHeaderColumn>

<TableHeaderColumn dataField='4' dataSort filter={ { type: 'TextFilter',
→˓placeholder: 'Please enter a value' } } width='140' csvHeader='#Absent QueryA'>
→˓#Absent QueryA</TableHeaderColumn>

<TableHeaderColumn dataField='5' dataSort filter={ { type: 'TextFilter',
→˓placeholder: 'Please enter a value' } } width='140' csvHeader='#Present QueryB'>
→˓#Present QueryB</TableHeaderColumn>

<TableHeaderColumn dataField='6' dataSort filter={ { type: 'TextFilter',
→˓placeholder: 'Please enter a value' } } width='140' csvHeader='#Absent QueryB'>
→˓#Absent QueryB</TableHeaderColumn>

<TableHeaderColumn dataField='7' dataSort filter={ { type: 'TextFilter',
→˓placeholder: 'Please enter a value' } } width='140' csvHeader='P-Value'>P-Value</
→˓TableHeaderColumn>

<TableHeaderColumn dataField='8' dataSort filter={ { type: 'TextFilter',
→˓placeholder: 'Please enter a value' } } width='140' csvHeader='Odds Ratio'>Odds
→˓Ratio</TableHeaderColumn>

</BootstrapTable>
);

}
}

}

export default connect(props => ({
results: {url: API_ROOT + `results/${props.jobId}`}

}))(ResultFishers)

In the case of Fisher’s, the response from Flask is generated by the:

df.to_json(orient='split')

from the Pandas DataFrame. This creates an object with keys columns, data, and index. In particular, under the data
key is an array of arrays:

[["https:\/\/www.github.com\/superphy#hlyC","O111","O24",1.0,0.0,0.0,1.0,null,1.0],[
→˓"https:\/\/www.github.com\/superphy#hlyB","O111","O24",1.0,0.0,0.0,1.0,null,1.0],[
→˓"https:\/\/www.github.com\/superphy#hlyA","O111","O24",1.0,0.0,0.0,1.0,null,1.0]]

2.6. Modifying the Front-End 25

Superphy Documentation, Release 4.2.2

(only an example, the full results.value.data array is 387 arrays long, and can vary)

Note that we use

dataField='5'

for example, which we apply to:

csvHeader='#Present QueryB'

which is used for exporting to .csv. And in between the TableHeaderColumn tags:

<TableHeaderColumn>#Present QueryB</TableHeaderColumn>

(options removed)

The #Present QueryB is used when displaying the webpage.

Finally, in /src/components/ResultsTemplates.js import you component:

import ResultML from './ResultML'

and add the case to the switch which decides which result view to return:

case "ml":
return <ML jobId={job.hash} />

2.7 Packaging It All Together

Once the main superphy/backend repo has any submodule you specified at the correct head, you can rebuild the entire
composition by running:

git submodule update
docker-compose build --no-cache .
docker-compose up

Alternatively, to run docker-compose in detached-head mode (where the composition runs entirely by the Docker
daemon, without need for a linked shell), run:

docker-compose up -d

2.8 Adding a New Option to the Subtyping Module

While reviewing Adding a New Module is important to see the general workflow, if you’re modifying the Subtyping
task to add a new analysis option you’ll have to modify the existing codebase instead of simply adding a new module.
There are a few things you’ll have to do:

1. Add a Switch to the Subtyping.js and ensure the selection is appended to the formData

2. Handle the selected option in the upload() function in ra_posts.py

3. Create an enqueue() call in spfy.py

4. Create a folder or git submodule in app/modules which contains the rest of the code your option needs

26 Chapter 2. Developer Guide

https://github.com/superphy/reactapp/blob/master/src/components/ResultsTemplates.js
https://github.com/superphy/reactapp/blob/master/src/containers/Subtyping.js
https://github.com/superphy/backend/blob/master/app/routes/ra_posts.py
https://github.com/superphy/backend/blob/master/app/modules/spfy.py

Superphy Documentation, Release 4.2.2

5. If you want to return the results to the front-end or upload the results to blazegraph, you’ll have to parse your
return to fit the format of datastruct_savvy.py and then enqueue the datastruct_savvy() call with your results as
the arg and all that job to the jobs dict in upload() of ra_posts.py

6. Then we need to edit beautify.py to parse the same dict used for datastruct_savvy.py. Afterwhich, the
merge_job_results() in ra_statuses.py will automatically merge the result and return it to the front-end

2.8.1 Adding a Checkbox to the Subtyping.js

As shown in Subtyping.js , checkboxes are defined like so:

<Checkbox
id="serotype"
name="check serotype"
checked={serotype}
onChange={this._updateSerotype}
label="Serotype"

/>

The important points are the checked={serotype} where serotype refers to a state defined by:

constructor(props) {
super(props);
this.state = {
file: null,
pi: 90,
amr: false,
serotype: true,
vf: true,
submitted: false,
open: false,
msg: '',
jobId: "",
hasResult: false,
groupresults: true,
bulk: false,
progress: 0

}
}

and uses the onChange function:

_updateSerotype = (value) => {
this.setState({ serotype: value })

}

which is appended to the form by:

data.append('options.serotype', this.state.serotype)

So if you wanted to add a new option, say Phylotyper, you’d create a checkbox like so:

<Checkbox
id="phylotyper"
name="check phylotyper"
checked={phylotyper}
onChange={this._updatePhylotyper}

(continues on next page)

2.8. Adding a New Option to the Subtyping Module 27

https://github.com/superphy/backend/blob/master/app/modules/turtleGrapher/datastruct_savvy.py
https://github.com/superphy/backend/blob/master/app/modules/beautify/beautify.py
https://github.com/superphy/backend/blob/master/app/modules/turtleGrapher/datastruct_savvy.py
https://github.com/superphy/backend/blob/master/app/routes/ra_statuses.py
https://github.com/superphy/reactapp/blob/master/src/containers/Subtyping.js

Superphy Documentation, Release 4.2.2

(continued from previous page)

label="Use Phylotyper"
/>

and add the default state as true in the constructor:

phylotyper: true

with the corresponding onChange function:

_updatePhylotyper = (value) => {
this.setState({ phylotyper: value })

}

which is appended to the form by:

data.append('options.phylotyper', this.state.phylotyper)

and that’s it for the form part!

2.8.2 Handling a New Option in ra_posts.py

Looking at the function definition, we can see that upload() in ra_posts.py is the route we want to edit:

for Subtyping module
the /api/v0 prefix is set to allow CORS for any postfix
this is a modification of the old upload() methods in views.py
@bp_ra_posts.route('/api/v0/upload', methods=['POST'])
def upload():

We store user-selected options in the options dictionary defined at the beginning, with a slight exception in the pi
option due to legacy reasons. For example, the serotype is defined via:

options['serotype']=True

So let’s define the default for phylotyper to be true:

options['phylotyper']=True

Then we need to process the formdata. The following code block is used to convert the lower-case false is javascript
to the upper case False in python, likewise with true:

processing form data
for key, value in form.items():

#we need to convert lower-case true/false in js to upper case in python
#remember, we also have numbers

if not value.isdigit():
if value.lower() == 'false':

value = False
else:

value = True
if key == 'options.amr':

options['amr']=value
if key == 'options.vf':

options['vf']=value
if key == 'options.serotype':

(continues on next page)

28 Chapter 2. Developer Guide

https://github.com/superphy/backend/blob/master/app/routes/ra_posts.py

Superphy Documentation, Release 4.2.2

(continued from previous page)

options['serotype']=value
if key == 'options.groupresults':

groupresults = value
if key == 'options.bulk':

options['bulk'] = value
else:

if key =='options.pi':
options['pi']=int(value)

So for phylotyper, we’ll add an if block:

if key == 'options.phylotyper':
options['phylotyper']=value

After this point, your option will be passed to the spfy.py call.

2.8.3 Create an enqueue() Call in spfy.py

Warning: A previous version of the docs recommended you create your own module (adjacent to spfy.py) to
enqueue your option. Note that this is no longer recommended as you have to support the bulk uploading and the
backlog option in the Subtyping.js card.

Currently, we define pipelines denoted within comment blocks:

AMR PIPELINE
def amr_pipeline(multiples):

job_amr = multiples.enqueue(amr, query_file, depends_on=job_id)
job_amr_dict = multiples.enqueue(

amr_to_dict, query_file + '_rgi.tsv', depends_on=job_amr)
this uploads result to blazegraph
if single_dict['options']['bulk']:

job_amr_datastruct = multiples.enqueue(
datastruct_savvy, query_file, query_file + '_id.txt', query_file + '_rgi.

→˓tsv_rgi.p', depends_on=job_amr_dict, result_ttl=-1)
else:

job_amr_datastruct = multiples.enqueue(
datastruct_savvy, query_file, query_file + '_id.txt', query_file + '_rgi.

→˓tsv_rgi.p', depends_on=job_amr_dict)
d = {'job_amr': job_amr, 'job_amr_dict': job_amr_dict,

'job_amr_datastruct': job_amr_datastruct}
we still check for the user-selected amr option again because
if it was not selected but BACKLOG_ENABLED=True, we dont have to
enqueue it to backlog_multiples_q since beautify doesnt upload
blazegraph
if single_dict['options']['amr'] and not single_dict['options']['bulk']:

job_amr_beautify = multiples.enqueue(
beautify, single_dict, query_file + '_rgi.tsv_rgi.p', depends_on=job_amr_

→˓dict, result_ttl=-1)
d.update({'job_amr_beautify': job_amr_beautify})

return d

if single_dict['options']['amr']:
amr_jobs = amr_pipeline(multiples_q)

(continues on next page)

2.8. Adding a New Option to the Subtyping Module 29

https://github.com/superphy/backend/blob/master/app/modules/spfy.py
https://github.com/superphy/backend/blob/master/app/modules/spfy.py
https://github.com/superphy/reactapp/blob/master/src/containers/Subtyping.js

Superphy Documentation, Release 4.2.2

(continued from previous page)

job_amr = amr_jobs['job_amr']
job_amr_dict = amr_jobs['job_amr_dict']
job_amr_datastruct = amr_jobs['job_amr_datastruct']
if not single_dict['options']['bulk']:

job_amr_beautify = amr_jobs['job_amr_beautify']
elif config.BACKLOG_ENABLED:

amr_pipeline(backlog_multiples_q)
END AMR PIPELINE

The AMR PIPELINE is a good reference point to start from. Note the relative imports to app/ in spfy.py:

from modules.amr.amr import amr

In this case, there is an folder called amr with module amr and main method amr. You don’t have to follow the same
naming structure of course.

A simple definition for phylotyper might start like so:

def blob_savvy_enqueue(single_dict):
...
PHYLOTYPER PIPEINE
def phylotyper_pipeline(singles):
the main enqueue call
job_phylotyper = singles.enqueue(phylotyper_main, query_file, depends_on=job_id)
d.update('job_phylotyper': job_phylotyper)
return d

check if the phylotyper option was selected by the user
if single_dict['options']['phylotyper']:
phylotyper_jobs = phylotyper_pipeline(singles_q)
job_phylotyper = phylotyper_jobs['job_phylotyper']

elif config.BACKLOG_ENABLED:
phylotyper_pipeline(backlog_singles_q)

Note: the singles-type queues are used when the enqueued module can’t be run in parallel on the same machine
(eg. you cant open up two terminals and run the module at the same time). If the module you’re adding can be run in
parrallel, you can replace the singles queues with the multiples queues.

The way enqueue() works is that the first *args is the function to enqueue and the following *args are for the function
itself. depends_on alows us to specify a job in RQ that must be completed prior to your function.

The code above is just a start and doesn’t support the bulk uploading option, storing of results in blazegraph, or return
to the front-end. In this case, the inner phylotyper_pipeline() function is used to enqueue the task. We do this to
support the bulk uploading option: in the regular case where the user has selected the phylotyper option, we call the
pipeline method with the singles_q which always runs before tasks in any backlog_* queue (See Optional:
Adding a new Queue for how this is implemented). Now, if the user have enabled backlog tasks, where all tasks are
run even if the user doesn’t select them, then phylotyper_pipeline() is still called except:

1. We call the pipeline with the backlog queue

2. We don’t care to store any job data

The additional functions: amr_to_dict converts the amr results into the structure required by
datastruct_savvy. The following code-block is used to enable bulk uploading. Note that if bulk uploading
is selected, we set a result_ttl=-1 for the status checking functions in ra_statuses.py to use for checking com-
pletion.

30 Chapter 2. Developer Guide

https://github.com/superphy/backend/blob/master/app/routes/ra_statuses.py

Superphy Documentation, Release 4.2.2

Note: This result_ttl=-1 requirement will no longer be necessary when job dependency checking is streamlined
in release candidate v5.0.0

this uploads result to blazegraph
if single_dict['options']['bulk']:

job_amr_datastruct = multiples.enqueue(
datastruct_savvy, query_file, query_file + '_id.txt', query_file + '_rgi.tsv_

→˓rgi.p', depends_on=job_amr_dict, result_ttl=-1)
else:

job_amr_datastruct = multiples.enqueue(
datastruct_savvy, query_file, query_file + '_id.txt', query_file + '_rgi.tsv_

→˓rgi.p', depends_on=job_amr_dict)

The beautify function is used to convert the return of amr_to_dict to the format required by the front-end React
application. It is only enqueued if the amr option, for example, was selected but bulk uploading was not selected.

2.8.4 Adding a Git Submodule

Warning: RQ enqueus functions relative to being inside the app/ folder, depending on your code base you may
have to refactor.

The process to add a submodule for an option in the Subtyping card is the same as in Integrating your Codebase into
Spfy. Please refer to that sectio for details.

2.8.5 Pickling the Result of Intermediate Tasks

We handle parsing of intermediate results by pickling the python object and storing it in the same location as the
genome file. For example, amr_to_dict.py handles this by:

p = os.path.join(amr_file + '_rgi.p')
pickle.dump(amr_dict, open(p, 'wb'))

If you need to store results between tasks, do so in the same manner.

Note: A cleanup task will be added in release candidate v5.0.0 which wipes the temporary containing folder once all
jobs are complete, so you don’t have to worry about cleanup for now.

2.8.6 Modifying your Return to Fit datastruct_savvy.py

datastruct_savvy.py expects the format of modules which return gene hits (ex. Virulence Factors or Antimicrobial
Resistance Genes) to have the form (an example of the conversion can be found in amr_to_dict.py:

{'Antimicrobial Resistance':
{'somecontigid1':{'START':1, 'STOP':2, 'GENE_NAME': 'somename', 'ORIENTATION':'+',

→˓'CUT_OFF':90},
'somecontigid2':{'START':1, 'STOP':2, 'GENE_NAME': 'somename', 'ORIENTATION':'+',

→˓'CUT_OFF':90},

(continues on next page)

2.8. Adding a New Option to the Subtyping Module 31

https://github.com/superphy/backend/blob/master/app/modules/amr/amr_to_dict.py
https://github.com/superphy/backend/blob/master/app/modules/turtleGrapher/datastruct_savvy.py
https://github.com/superphy/backend/blob/master/app/modules/amr/amr_to_dict.py

Superphy Documentation, Release 4.2.2

(continued from previous page)

'somecontigid3':{'START':1, 'STOP':2, 'GENE_NAME': 'somename', 'ORIENTATION':'+',
→˓'CUT_OFF':90}
}}

and expects the result of serotyping as:

{‘Serotype’: {‘O-Type’:’O1’, ‘H-Type’:’H2’,}

}

If you were adding a return similar to serotype, such as with phylotyper, define a parsing function in datas-
truct_savvy.py similar to parse_serotype():

def parse_serotype(graph, serotyper_dict, uriIsolate):
if 'O type' in serotyper_dict:

graph.add((uriIsolate, gu('ge:0001076'),
Literal(serotyper_dict['O type'])))

if 'H type' in serotyper_dict:
graph.add((uriIsolate, gu('ge:0001077'),

Literal(serotyper_dict['H type'])))
if 'K type' in serotyper_dict:

graph.add((uriIsolate, gu('ge:0001684'),
Literal(serotyper_dict['K type'])))

return graph

Then add the call in the elif in generate_datastruct():

graphing functions
for key in results_dict.keys():

if key == 'Serotype':
graph = parse_serotype(graph,results_dict['Serotype'],uriIsolate)

elif key == 'Virulence Factors':
graph = parse_gene_dict(graph, results_dict['Virulence Factors'], uriGenome,

→˓'VirulenceFactor')
elif key == 'Antimicrobial Resistance':

graph = parse_gene_dict(graph, results_dict['Antimicrobial Resistance'],
→˓uriGenome, 'AntimicrobialResistanceGene')
return graph

If you’re adding an option that returns specific hits, such as PanSeq, parse to results as before and call
parse_gene_dict() on it.

graphing functions
for key in results_dict.keys():

if key == 'Serotype':
graph = parse_serotype(graph,results_dict['Serotype'],uriIsolate)

elif key == 'Virulence Factors':
graph = parse_gene_dict(graph, results_dict['Virulence Factors'], uriGenome,

→˓'VirulenceFactor')
elif key == 'Antimicrobial Resistance':

graph = parse_gene_dict(graph, results_dict['Antimicrobial Resistance'],
→˓uriGenome, 'AntimicrobialResistanceGene')

elif key == 'Panseq':
graph = parse_gene_dict(graph, results_dict['Panseq'], uriGenome,

→˓'PanseqRegion')
return graph

32 Chapter 2. Developer Guide

https://github.com/superphy/backend/blob/master/app/modules/turtleGrapher/datastruct_savvy.py
https://github.com/superphy/backend/blob/master/app/modules/turtleGrapher/datastruct_savvy.py

Superphy Documentation, Release 4.2.2

You’ll then have to enqueue the datastruct_savvy() call in spfy.py similar to:

this uploads result to blazegraph
if single_dict['options']['bulk']:

job_amr_datastruct = multiples.enqueue(
datastruct_savvy, query_file, query_file + '_id.txt', query_file + '_rgi.tsv_

→˓rgi.p', depends_on=job_amr_dict, result_ttl=-1)
else:

job_amr_datastruct = multiples.enqueue(
datastruct_savvy, query_file, query_file + '_id.txt', query_file + '_rgi.tsv_

→˓rgi.p', depends_on=job_amr_dict)

Then the datastruct result is added to the d dictionary of your inner pipeline function:

d = {'job_amr': job_amr, 'job_amr_dict': job_amr_dict,
'job_amr_datastruct': job_amr_datastruct}

and, outside of the inner function, it’s assigned as job_amr_datastruct:

job_amr_datastruct = amr_jobs['job_amr_datastruct']

By default, we set the datastruct as the end task to send back - this is to faciliate bulk uploading. If the user-doesn’t
select the bulk option, then the return is the result from beautify():

new to 4.3.3 if bulk ids used return the endpoint of datastruct generation
to poll for completion of all jobs
these two ifs handle the case where amr (or vf or serotype) might not
be selected but bulk is
if (single_dict['options']['vf'] or single_dict['options']['serotype']):

ret_job_ectyper = job_ectyper_datastruct
if single_dict['options']['amr']:

ret_job_amr = job_amr_datastruct
if bulk uploading isnt used, return the beautify result as the final task
if not single_dict['options']['bulk']:

if (single_dict['options']['vf'] or single_dict['options']['serotype']):
ret_job_ectyper = job_ectyper_beautify

if single_dict['options']['amr']:
ret_job_amr = job_amr_beautify

add the jobs to the return
if (single_dict['options']['vf'] or single_dict['options']['serotype']):

jobs[ret_job_ectyper.get_id()] = {'file': single_dict[
'i'], 'analysis': 'Virulence Factors and Serotype'}

if single_dict['options']['amr']:
jobs[ret_job_amr.get_id()] = {'file': single_dict[

'i'], 'analysis': 'Antimicrobial Resistance'}

2.8.7 Modifying beautify.py

Technically, you’ll mostly be using the json_return() method from beautify.py as it performs the core conversion
to json. beautify() also performs a number of checks that are specific to ECTyper and RGI: namely, we parse
the gene_dict and find the widest hit in a given contig. For new modules, we recommand you just create a basic
function in beautify.py to perform the pickle.load() to bypass the widest_hit search and failed handling. For
example:

def beautify_myoption(args_dict, pickled_dictionary):
gene_dict = pickle.load(open(pickled_dictionary, 'rb'))

(continues on next page)

2.8. Adding a New Option to the Subtyping Module 33

https://github.com/superphy/backend/blob/master/app/modules/spfy.py
https://github.com/superphy/backend/blob/master/app/modules/beautify/beautify.py
https://github.com/superphy/backend/blob/master/app/modules/beautify/beautify.py

Superphy Documentation, Release 4.2.2

(continued from previous page)

this converts our dictionary structure into json and adds metadata (filename, etc.
→˓)
json_r = json_return(args_dict, gene_dict)
return json_r

If you’re adding a serotyping tool such as phylotyper, modifying:

if analysis == 'Serotype':

to be:

if analysis in ('Serotype','Phylotyper'):

should be all the modification to json_return() that is required.

For results similar to VF/AMR, where we have a list of genes, you can call json_return() directly without
modification.

With beautify.py modified, add the beautify_myoption() call to your pipeline like so:

if single_dict['options']['phylotyper'] and not single_dict['options']['bulk']:
job_phylotyper_beautify = multiples.enqueue(

beautify_myoption, single_dict, query_file + '_phylotyper.p', depends_on=job_
→˓phylotyper_dict, result_ttl=-1)
d.update({'job_phylotyper_beautify': job_phylotyper_beautify})

and then set the result as the return to the front-end:

if bulk uploading isnt used, return the beautify result as the final task
if not single_dict['options']['bulk']:

if (single_dict['options']['vf'] or single_dict['options']['serotype']):
ret_job_ectyper = job_ectyper_beautify

if single_dict['options']['amr']:
ret_job_amr = job_amr_beautify

2.9 Debugging

You can see all the containers on your host computer by running:

docker ps

When running commands within /backend (at the same location as the docker-compose.yml file), you can see
the composition-specific containers by running:

docker-compose logs

Within the repo, you can also see logs for specific containers by referencing the service name, as defined in the
docker-compose.yml file. For example, logs for the Flask webserver can be retrieved by running:

docker-compose logs webserver

or if you wanted the tail:

docker-compose logs --tail=100 webserver

34 Chapter 2. Developer Guide

https://github.com/superphy/backend/blob/master/app/modules/beautify/beautify.py

Superphy Documentation, Release 4.2.2

or for Blazegraph:

docker-compose logs blazegraph

To clean up after Docker, see the excellent Digital Ocean guide on How To Remove Docker Images, Containers, and
Volumes.

2.9.1 Monitoring Flask

Three options:

1. Docker captures all stdout messages into Docker’s logs. You can see them by running:

docker logs backend_webserver_1

2. Flask is also configured to report errors via Sentry; copy your DSN key and uncomment the SENTRY_DSN
option in /app/config.py.

3. Drop a shell info the webserver container, then you can run explore the file structure from there. The webserver
will typically run as backend_webserver_1. Note that there won’t be any access.log or similar as this
information is collected through Docker’s logs.

2.9.2 Monitoring RQ

To monitor the status of RQ tasks and check on failed jobs, you have two options:

1. Setup a https://sentry.io account and copy your DSN into /app/config.py

2. Port 9181 is mapped to host on Service backend-rq, you can use rq-dashboard via:

1. docker exec -it backend_worker_1 sh this drops a shell into the rq worker container which has
rq-dashboard installed via conda

2. rq-dashboard -H redis runs rq-dashboard and specifies the redis host automatically defined by docker-
compose

3. then on your host machine visit http://localhost:9181

We recommend using RQ-dashboard to see jobs being enqueued live when testing as Sentry only reports failed
jobs. On remote deployments, we use Sentry for error reporting.

Warning: RQ-dashboard will not report errors from the Flask webserver. In addition, jobs enqueued with
depends_on will not appear on the queues list until their dependencies are complete.

2.9.3 Debugging Javascript

For testing simple commands, I use the Node interpreter similar to how one might use Python’s interpreter:

node
.exit

We use the Chrome extension React Dev Tools to see our components and state, as defined in React; Chrome’s
DevTools will list Elements in their HTML form which, while not particularly useful to debug React-specific code,
can be used to check which CSS stylings are applied.

2.9. Debugging 35

https://www.digitalocean.com/community/tutorials/how-to-remove-docker-images-containers-and-volumes
https://www.digitalocean.com/community/tutorials/how-to-remove-docker-images-containers-and-volumes
https://sentry.io
http://localhost:9181
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en

Superphy Documentation, Release 4.2.2

The Redux Dev Tools extension is used to monitor the state of our reactapp’s Redux store. This is useful to see that
your jobs are added correctly.

Finally, if you clone our reactapp repo, and run:

yarn start

any saved changes will be linted with eslint.

2.10 Editing the Docs

2.10.1 Setup

cd docs/
sphinx-autobuild source _build_html

Then you can visit http://localhost:8000 to see you changes live. Note that it uses the default python theme locally,
and the default readthedocs theme when pushed.

36 Chapter 2. Developer Guide

https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en
https://github.com/superphy/reactapp
http://localhost:8000

CHAPTER 3

Deplyoment Guide

Table of Contents

• Deploying in General

– Host to Container Mapping

– Volume Mapping in Production

– Ports

– Setting a Subdomain

– Setting up a Reverse Proxy

– Point Reactapp to Your Subdomain

• Deploying to Corefacility

– Blazegraph

– Docker Service

– Docker Hub

– Nginx

The way we recommend you deploy Spfy is to simply use the Docker composition for everything; this approach is
documented in Deploying in General. Specifics related to the NML’s deployment is given in Deploying to Corefacility.

3.1 Deploying in General

Let’s take a look at the docker-compose.yml file.

37

Superphy Documentation, Release 4.2.2

version: '2'
services:

webserver:
build:

context: .
dockerfile: Dockerfile-spfy

image: backend
ports:
- "8000:80"
depends_on:
- redis
- blazegraph
volumes:
- /datastore

reactapp:
build:

context: .
dockerfile: Dockerfile-reactapp

image: reactapp
ports:
- "8090:5000"
depends_on:
- webserver

worker:
build:

context: .
dockerfile: Dockerfile-rq

image: backend-rq
ports:
- "9181:9181" #this is for debugging, drop a shell and run rq-dashboard if you

→˓need to see jobs
volumes_from:
- webserver
depends_on:
- webserver

worker-blazegraph-ids:
build:

context: .
dockerfile: Dockerfile-rq-blazegraph

image: backend-rq-blazegraph
volumes_from:
- webserver
depends_on:
- webserver

worker-priority:
build:

context: .
dockerfile: Dockerfile-rq-priority

image: backend-rq-priority
volumes_from:
- webserver
depends_on:
- webserver

(continues on next page)

38 Chapter 3. Deplyoment Guide

Superphy Documentation, Release 4.2.2

(continued from previous page)

redis:
image: redis:3.2
command: redis-server --appendonly yes # for persistance
volumes:
- /data

blazegraph:
image: superphy/blazegraph:2.1.4-inferencing
ports:
- "8080:8080"
volumes:
- /var/lib/jetty/

3.1.1 Host to Container Mapping

There are a few key points to note:

ports:
- "8000:80"

The configuration maps host:container; so port 8000 on the host (your computer) is linked to port 80 of the
container. Fields like volumes typically have only one value: /var/lib/jetty/; this is done to instruct Docker
to map the folder /var/lib/jetty within the container itself to a generic volume managed by Docker, thereby
enabling the data to persist across start/stop cycles.

You can also add a host path to volume mappings such as /dbbackup/:/var/lib/jetty/ so that Docker uses
an actual path on your host, instead of a generic Docker-managed volume. As before, the first term, /dbbackup/
would reside on the host.

Warning: A caveat to note is that if you do not specify a host folder on volume mappings, running a
docker-compose down will still wipe the generic volume. Either run docker-compose stop instead, or
specify a host mapping to persist the data.

3.1.2 Volume Mapping in Production

In production, at minimum we recommend you map Blazegraph’s volume to a backup directory. /datastore also
stores all the uploaded genome files and related temporary files generated during analysis. /data is used to store both
the parsed responses to the front-end, and the task queue managing them. If you want the analysis tasks to continue, or
existing results shown to the front-end, to persist after running docker-compose down you’ll have to map both
volumes - server failures or just running docker-compose stop will still persist the data without requiring you
to map to host.

3.1.3 Ports

reactapp is the front-end user interface for Spfy whereas webserver serves the backend Flask APIs. Without
modification, when you run docker-compose up port 8090 is used to access the app. The front-end then calls
port 8000 to submit requests to the backend. This approach is fine for individual users on their own computer, but this
setup should not be used for production as it would, at minimum, require opening one additional port.

3.1. Deploying in General 39

Superphy Documentation, Release 4.2.2

Instead, we recommend you change the port for reactapp to the standard port 80, and also map the webserver
to a subdomain.

Setting the host port mapping can be done by modifying the webserver config with the below:

ports:
- "80:80"

For networking the backend APIs, you can keep the webserver running on port 8000 and use a reverse-proxy such as
NGINX to map the subdomain to port 8000 on your server. In other words, we’ll set it up so requests made by reactapp
to the API are sent to api.mydomain.com, for example, which maps to the IP address of your server (ideally via
HTTPS). Your reverse-proxy will then redirect the request to port 8000 locally, while serving the reactapp interface on
the main domain (mydomain.com, in this case).

3.1.4 Setting a Subdomain

This has to be done through the interface of your domain registrar. You’ll have to add an Address Record (A Record),
which is typically under the heading “Manage Advanced DNS Records” or similar.

3.1.5 Setting up a Reverse Proxy

We recommend you use NGINX as the reverse proxy. You can find their Getting Started guide at https://www.nginx.
com/resources/wiki/start/

In addition, we recommend you use Certbot (part of the EFF’s Let’s Encrypt) project to get the required certificates
and setup HTTPS on your server. You can find their interactive guide at https://certbot.eff.org/ which allow’s you to
specify the webserver (NGINX) and operating system you are using. Certbot comes with a nice script to automatically
modify your NGINX configuration as required.

3.1.6 Point Reactapp to Your Subdomain

To tell reactapp to point to your subdomain, you’ll have to modify the api.js settings located at reactapp/src/
middleware/api.js.

The current ROOT of the target domain is:

const ROOT = window.location.protocol + '//' + window.location.hostname + ':8000/'

change this to:

const ROOT = 'https' + '//' + 'api.mydomain.com' + '/'

and then rebuild and redeploy reactapp.

docker-compose build --no-cache reactapp
docker-compose up -d

Note: The Flask webserver has Cross-Origin Requests (CORS) enabled, so you can deploy reactapp to another server
(that is only running reactapp, and not the webserver, databases, workers). The domain can be mydomain.com or
any domain name you own - you’ll just have to setup the A records as appropriate.

40 Chapter 3. Deplyoment Guide

https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/
https://certbot.eff.org/

Superphy Documentation, Release 4.2.2

3.2 Deploying to Corefacility

3.2.1 Blazegraph

Looking at the filesystem:

[claing@superphy backend-4.3.3]$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/superphy-root 45G 31G 14G 69% /
devtmpfs 12G 0 12G 0% /dev
tmpfs 12G 2.5G 9.3G 21% /dev/shm
tmpfs 12G 26M 12G 1% /run
tmpfs 12G 0 12G 0% /sys/fs/cgroup
/dev/vda1 497M 240M 258M 49% /boot
/dev/mapper/docker-docker 200G 21G 180G 11% /docker
warehouse:/ifs/Warehouse 769T 601T 151T 81% /Warehouse
tmpfs 2.4G 0 2.4G 0% /run/user/40151
tmpfs 2.4G 0 2.4G 0% /run/user/40290

/Warehouse is used for long-term data storage and shared across the NML. In order to write to /Warehouse,
you need the permissions of either claing or superphy; there are some problems with passing these permissions
into Docker environments, so we run Blazegraph, inside of folder /Warehouse/Users/claing/superphy/
spfy/docker-blazegraph/2.1.4-inferencing and as claing, outside of Docker using:

java -server -Xmx4g -Dbigdata.propertyFile=/Warehouse/Users/claing/superphy/spfy/
→˓docker-blazegraph/2.1.4-inferencing/RWStore.properties -jar blazegraph.jar

This command is run using screen allowing us to detach it from our shell.

screen
CTRL+a, d

and to resume:

screen -r

See https://github.com/superphy/backend/issues/159

3.2.2 Docker Service

[claing@superphy docker]$ sudo cat /etc/fstab

#
/etc/fstab
Created by anaconda on Thu Dec 24 17:40:08 2015
#
Accessible filesystems, by reference, are maintained under '/dev/disk'
See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info
#
/dev/mapper/superphy-root / xfs defaults 1 1
UUID=6c62e5cf-fd55-41e8-8122-e5e78643e3cd /boot xfs defaults
→˓ 1 2
/dev/mapper/superphy-swap swap swap defaults 0 0
warehouse:/ifs/Warehouse /Warehouse nfs defaults 0 0
/dev/mapper/docker-docker /docker xfs defaults 1 2

3.2. Deploying to Corefacility 41

https://github.com/superphy/backend/issues/159

Superphy Documentation, Release 4.2.2

Our root filesystem for the Corefacility VM is really small (45G) and we instead have a virtual drive at /dev/
mapper/docker-docker which is mounted on /docker which has our Docker images / unmapped volumes.
This is setup using symlinks:

sudo systemctl stop docker
cd /var/lib/
sudo cp -rf docker/ /docker/backups/
sudo rm -rf docker/
sudo mkdir /docker/docker
sudo ln -s /docker/docker /var/lib/docker
sudo systemctl start docker

3.2.3 Docker Hub

Docker Hub is used to host pre-built images; for us, this mostly consisting of our base docker-flask-conda
image. The org. page is publically available at https://hub.docker.com/u/superphy/ and you can pull without any
permission issues. To push a new image, first register an account at https://hub.docker.com/

The owner for the org. has the username superphyinfo and uses the same password as superphy.
info@gmail.com. You can use it to add yourself to the org.

You can then build and tag docker images to be pushed onto Docker Hub.

docker build -f Dockerfile-reactapp -t superphy/reactapp:4.3.3-corefacility .

or tag an existing image:

docker images
docker tag 245d7e4bb63e superphy/reactapp:4.3.3-corefacility

Either way, you can then push using the same command:

docker push superphy/reactapp:4.3.3-corefacility

Note: We occasionally use Docker Hub as a work-around in case a computer can’t build an image. There is some bug
where Corefacility VMs aren’t connecting to NPM and thus we build the reactapp image on Cybera and pull it down
on Corefacility.

3.2.4 Nginx

We run Nginx above the Docker layer for 3 reasons:

1. Handle the /superphy prefix to all our routes as we don’t sure on /

2. To host both the original SuperPhy and Spfy on a single VM

3. Buffer large file uploads before sending it to Spfy’s Flask API

In /etc/nginx/nginx.conf:

user spfy;
worker_processes auto;
error_log /var/log/nginx/error.log;
pid /run/nginx.pid;

(continues on next page)

42 Chapter 3. Deplyoment Guide

https://hub.docker.com/u/superphy/
https://hub.docker.com/

Superphy Documentation, Release 4.2.2

(continued from previous page)

Load dynamic modules. See /usr/share/nginx/README.dynamic.
include /usr/share/nginx/modules/*.conf;

events {
worker_connections 1024;

}

http {
log_format main '$remote_addr - $remote_user [$time_local] "$request" '

'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';

access_log /var/log/nginx/access.log main;
error_log /var/log/nginx/error.log warn;

sendfile on;
tcp_nopush on;
tcp_nodelay on;
keepalive_timeout 2m;
types_hash_max_size 2048;

include /etc/nginx/mime.types;
default_type application/octet-stream;

Load modular configuration files from the /etc/nginx/conf.d directory.
See http://nginx.org/en/docs/ngx_core_module.html#include
for more information.
include /etc/nginx/conf.d/*.conf;

map $http_upgrade $connection_upgrade {
default upgrade;
'' close;

}

server {
client_max_body_size 60g;
listen 80 default_server;
listen 443 ssl http2 default_server;
listen [::]:80 default_server;
listen [::]:443 ssl http2 default_server;
server_name superphy.corefacility.ca;
Load configuration files for the default server block.
include /etc/nginx/default.d/*.conf;

location / {
proxy_pass http://127.0.0.1:8081;

}
location /spfy/ {

rewrite ^/spfy/(.*)$ /$1 break;
proxy_pass http://localhost:8090;
proxy_redirect http://localhost:8090/ $scheme://$host/spfy/;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;
proxy_read_timeout 20d;

(continues on next page)

3.2. Deploying to Corefacility 43

Superphy Documentation, Release 4.2.2

(continued from previous page)

}
location /grouch/ {

rewrite ^/grouch/(.*)$ /$1 break;
proxy_pass http://localhost:8091;
proxy_redirect http://localhost:8091/ $scheme://$host/grouch/;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;
proxy_read_timeout 20d;

}
location /shiny/ {

rewrite ^/shiny/(.*)$ /$1 break;
proxy_pass http://127.0.0.1:3838;
proxy_redirect http://127.0.0.1:3838/ $scheme://$host/shiny/;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;
proxy_read_timeout 950s;

}

}

server {
client_max_body_size 60g;
listen 80;
listen 443 ssl http2;
listen [::]:80;
listen [::]:443 ssl http2;
server_name lfz.corefacility.ca;
Load configuration files for the default server block.
include /etc/nginx/default.d/*.conf;

location / {
proxy_pass http://127.0.0.1:8081;

}
location = /spfy {

return 301 /superphy/spfy/;
}
location = /grouch {

return 301 /superphy/grouch/;
}
location = /minio {

return 301 /superphy/minio/;
}
location /spfy/ {

rewrite ^/spfy/(.*)$ /$1 break;
proxy_pass http://localhost:8090;
proxy_redirect http://localhost:8090/superphy/ $scheme://$host/spfy/;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;
proxy_read_timeout 20d;

}
location /grouch/ {

rewrite ^/grouch/(.*)$ /$1 break;
proxy_pass http://localhost:8091;
proxy_redirect http://localhost:8091/superphy/ $scheme://$host/grouch/;

(continues on next page)

44 Chapter 3. Deplyoment Guide

Superphy Documentation, Release 4.2.2

(continued from previous page)

proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;
proxy_read_timeout 2h;
proxy_send_timeout 2h;

}
location /shiny/ {

rewrite ^/shiny/(.*)$ /$1 break;
proxy_pass http://127.0.0.1:3838;
proxy_redirect http://127.0.0.1:3838/ $scheme://$host/shiny/;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;
proxy_read_timeout 950s;

}
}

}

Currently, this is setup to run the new Reactapp version of Spfy at https://lfz.corefacility.ca/superphy/grouch/ and the
old AngularJS version + all the API endpoint at https://lfz.corefacility.ca/superphy/spfy/ This will probably change
in the future, when backwards-incompatible changes are introduced to Spfy; we will run exclusively out of https:
//lfz.corefacility.ca/superphy/spfy/ The old SuperPhy is at https://lfz.corefacility.ca/superphy/

Note: There is an http://superphy.corefacility.ca/spfy/ address (but not a http://superphy.corefacility.ca/grouch/ ad-
dress) that is only accessible from within the NML network (you’d have to VPN in if you’re at the CFIA building), but
we prefer to focus on the lfz.corefacility/superphy/ routes which are available on both external/internal
networks.

Some other points to note:

• The rewrite rules are critical to operating on Corefacility, as the /superphy/ requirement can be tricky

• We’re unsure if the client_max_body_size 60g; has any effect when deployed on Corefacility, it might
be that there is another Nginx instance ran by the NML to route its VMs. Currently we’re capped at ~250
MB uploads at a time on Corefacility, you can see a long debugging log of this at https://github.com/superphy/
backend/issues/159

• Nginx is not hosting the websites, it only serves to proxy the requests to Apache (for the old SuperPhy) or
Docker (for the new Spfy)

Warning: Nginx is also run internally in the Docker webserver image to allow you to handle running the compo-
sition by itself, but generally you shouldn’t have to worry about it.

3.2. Deploying to Corefacility 45

https://lfz.corefacility.ca/superphy/grouch/
https://lfz.corefacility.ca/superphy/spfy/
https://lfz.corefacility.ca/superphy/spfy/
https://lfz.corefacility.ca/superphy/spfy/
https://lfz.corefacility.ca/superphy/
http://superphy.corefacility.ca/spfy/
http://superphy.corefacility.ca/grouch/
https://github.com/superphy/backend/issues/159
https://github.com/superphy/backend/issues/159

Superphy Documentation, Release 4.2.2

46 Chapter 3. Deplyoment Guide

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

47

	Introduction
	Use:
	Submodule Build Statuses:
	Stats:
	CLI: Generate Graph Files:
	CLI: Generate Ontology:
	CLI: Enqueue Subtyping Tasks w/o Reactapp:
	Architecture:
	Further Details:
	Blazegraph:
	Contributing:

	Developer Guide
	Getting Started
	Adding a New Module
	Directly Adding a New Module
	Adding an Endpoint in Flask
	Optional: Adding a new Queue
	Modifying the Front-End
	Packaging It All Together
	Adding a New Option to the Subtyping Module
	Debugging
	Editing the Docs

	Deplyoment Guide
	Deploying in General
	Deploying to Corefacility

	Indices and tables

